Tetrahedron Letters No. 49-50, pp 4327 - 4330, 1974. Pergamon Press. Printed in Great Britain.

STRUCTURES OF EZOMYCINS A1 AND A2*

Kanzo Sakata, Akira Sakurai and Saburo Tamura The Institute of Physical and Chemical Research, Wako-shi, Japan. (Received in Japan 24 September 1974; received in UK for publication 29 October 1974)

Ezomycins A₁ $C_{26}H_{38}N_8O_{15}S^{+}H_2O$ (I) and A₂ $C_{19}H_{26}N_6O_{12}^{+}H_2O$ (II) are antifungal nucleoside antibiotics produced by a strain of <u>Streptomyces</u>.^{1,2)} Positive colorations to a <u>p</u>-dimethylaminobenzaldehyde test^{**,3)} suggest the presence of a ureido group in both I and II. On acid hydrolysis, I liberated cytosine.¹⁾ Hydrolysis of I with Dowex 50W (H⁺) afforded <u>L</u>-cystathionine and II as main products. II was further acid-hydrolyzed to give ezoaminuroic acid (III), 3amino-3,4-dideoxy-<u>p-xylo</u>hexopyranuroic acid.⁴⁾

Hydrolysis of I with 1.5N NaOH at 90° gave anhydronucleoside A (IV): $C_{13}H_{14}N_40_8^{\#}$; needles, mp >280° (dec.); $[\alpha]_D^{25}$ +21.8° (\underline{c} =1.2, N NH₄OH); $\lambda_{max}^{0.05N HC1}$ nm (ε) 211 (8400), 238 (7700), 257 (7700); $\lambda_{max}^{0.05N NaOH}$ 225 (sh., 10,700), 261 (5700); p<u>Ka</u>' 3.8, 9.9; M⁺ m/e 714 for $C_{13}H_9N_40_8$ (TMS)₅. All of the signals in the pmr spectrum of IV were assigned by spin-decoupling experiments as shown in Table 1. The UV (λ_{max} 261 nm) and p<u>Ka</u>' (9.9) data indicated that the cytosine moiety in I was converted to uracil in IV. IV was negative to ninhydrin but still positive to DMA. On esterification with methanolic HC1, IV gave monomethyl ester (V): $C_{14}H_{16}N_40_8^{\#}$; needles, mp >300°; M⁺ m/e 656 for $C_{14}H_{12}N_40_8$ (TMS)₄. Acetylation of V with acetic anhydride-pyridine afforded mainly monoacetate (VI): fine needles, mp >256° (dec.); λ_{max}^{MeOH} nm (ε) 212.5 (21,200), 244 (23,200). Chemical shift of H-2' of VI (Table 1) shows that C-2' hydroxyl was acetylated. Spin-decoupling experiments showed that the broad multiplet (4.7, H-5', W_{1/2}=18) is coupled with an amide proton (6.48, d., 9.0) as well as with H-4' and H-6'. This indicated that the ureido is attached to C-5'. Thus, four nitrogens of IV were attributed to a uracil moiety and a ureido group. Six of

^{*} This paper comprises part IV of the series, "Studies on Ezomycins, Antifungal Antibiotics." Preceding paper, see Reference 2.

^{**} Abbreviated as DMA hereafter.

[#] This formula was confirmed by elemental analysis.

	H-1'	Ħ-2'	₩-3'	H-4 '	H-5'	H-6'	H-7'	H-5	H-6	other protons
11 (2% ND ₃ in D ₂ 0)	5.88 s	4.4 \$ 4.6	3.91 dd, 11.0, 5.0	4.4 \$ 4.6	4.4 \$ 4.6	(4.98) br. t	4.4 5 4.6	6.13 d, 8.0	7.69 d, 8.0	1.55(H-4"a, br. q, 11), 2.33(H-4"e, br. d, 11), 3.2(m, H-2", 3"), 4.18 (H-5", br. d, 11), 4.74 (H-1", d, 6.5)
IV (2% ND ₃ in D ₂ 0)	5.94 8	4.55 d, 4.9	3.98 dd, 10.8, 4.9	4.23 dd, 10.8, 4.6	4.74 dd, 5.9, 4.6	5.86 d, 5.9		5.81 d, 7.6	7.60 d, 7.6	
VI (DMSO-d ₆)	5.85 8	5.57 d, 5.0	3.96 dd, 11,	4.17 dd, 11,	4.7 br. m	6.04 d, 6.0		5.68 d, 8.0	7.62 d, 8.0	2.12, 3.74(3H, each s), 5.60(2H, s) 6.48(1H, d, 9.0) - NH
VIII (2% ND ₃ in D ₂ 0)	5.81 s	(4.47)	3.81 dd, 10.5 5.0	(4.47)	(4.61)	4.30 dd, 2.5, 1.8	(4.40)	6.07 d, 8.0	7.62 d, 8.0	
IX (DMSO-d ₆)	5.83 s	5.49	4.12	4.12	4.51 m	5.49	4.70 d, 1.8	7.21 d, 8.0	7.95 d, 8.0	2.06(6H, s), 2.12, 2.16, 3.64(3H, each s), 8.80(1H, d, 6.5, -NH)
IX (CDC1 ₃ -MeOH-d ₄ -3:1)	5.87 s	5.55 d, 5.6	4.07 dd, 11, 5,6	4.34 dd, 11, 4.0	4.65	5.65 d, 1.8, 3.0	4.65	7.47 d, 8.0	7.92 d, 8.0	2.13, 2.18, 2.22, 2.24, 3.74(3H, each s)

Table 1. PMR Spectral Data^{*} of II, IV, VI, VIII and IX

eight oxygens of IV are ascribed to a uracil, a ureido, a carboxyl and a hydroxyl, and the remaining two are supposed to constitute ether linkages.

The chemical shift of the olefinic proton (5.86, H-6', d., 5.9) and the pKa' value (3.8) of IV suggest that the alkaline hydrolysis of I caused cleavage of <u>L</u>-cystathionine from I accompanying B-elimination of III to give IV having α -alkoxy- α , β -unsaturated carboxylic acid moiety. This was further substantiated by well consistence of the λ_{max} 238 nm of IV with the calculated value (232-237 nm).⁵ Hydrogen deficiency 9 in IV demands that the sugar part should be bi-cyclic. The planar structure of IV, therefore, is formulated as the following.

Oxidation of I with 2 molar equiv. of NaIO₄, followed by mild acid-hydrolysis furnished glyoxal (identified as bisphenylhydrazone), lactam-aminomemiacetal (VII) and nucleoside A (VIII): $C_{13}H_{17}N_5O_8^{\#}$; prisms, mp >255° (dec.); $[\alpha]_D^{27}$ +114° (\underline{c} =0.51, 0.1N NaOH), $\lambda_{max}^{0.05N HCl}$ nm (ε) 212.5 (9800). 278.5 (13,000); $\lambda_{max}^{0.05N NaOH}$ 230 (sh., 7200), 271 (8400), positive to DMA. Esterification of VIII with methanolic HCl followed by acetylation afforded monomethyl ester-tetraacetate (IX): $C_{22}H_{27}N_5O_{12}^{\#}$; mp >280° (dec.); $[\alpha]_D^{27}$ +68.7° (\underline{c} =0.15, CHCl₃-MeOH=1:1); λ_{max}^{MeOH} nm (ε) 212 (20,700), 249 (18,700), 297 (8400), negative to DMA. In the spectrum of IX (Table 1) the signals due to H-2' and H-6' moved downfield by more than 1 ppm as compared with those fo VIII. This shows the presence in VIII of two hydroxyls at C-2' and C-6', which were acetylated in IX. The negative coloration with DMA and the UV (λ_{max} 297 nm) of IX indicated

^{*} Otherwise stated the spectra were measured at 100 MHz and chemical shifts are expressed in δ values and coupling constants in Hz.

that the remaining two acetyls were introduced to the ureido and cytosine functions. The signal due to H-5' and H-7' (4.65, 2H, in CDC1₃-MeOH=3:1) was separated to 4.51 (m., $W_{1/2}$ =11) and 4.70 (d., 1.8) in DMSO-d₆. The broad multiplet ascribed to H-5' became narrow ($W_{1/2}$ =6.5) on addition of D_2O . This confirmed that the ureido group is attached to C-5'. To nucleoside A was assigned the structure VIII containing an unusual novel sugar moiety.⁹⁾ Accordingly, II was postulated to have a structure connecting III to C-6' of VIII through a glycosyl linkage.

In the spectra of II, IV, VI, VIII and IX the anomeric proton appeared as sharp singlet.⁶⁾ This suggest that the furanose ring is fixed in C-2' exo- or C-3' endo-conformation. $6c_{,7}$ H-3' and H-4' are present in 1,2-trans-diaxial relationship because of their large coupling constant $(J_{3',4'}=11)$. From the consideration with Dreiding model, only the following relative stereostructure can be formulated for VIII.

In the structure the furanose moiety takes a C-3' endoconformation ($\phi_{1',2'}$ =95-110°, $\phi_{3',4'}$ =180°). Since J_{4',5'} is 4-5 Hz, the ureido group on C-5' is in β -axial. β -Elimination of III from I suggests that the hydroxyl on C-6' (α -axial) and H-7' (β -axial) in VIII are present in 1,2trans-diaxial. The coupling constants (J5'.6'=2.5-3.0,

 $J_{6',7'}$ =1.8) in the spectra of VIII and IX support this assumption.

From CD spectra of I, II and VIII (Fig. 1), the cytosine nuclei in these compounds are deduced to have β -configuration.⁸⁾ Thus the structure of VIII was determined as 1-(3',7'-anhydro-5'-deoxy-5'-ureido-<u>D</u>-<u>threo</u>-B-<u>D</u>-<u>allo</u>octofuranosyluronic acid)-cytosine. In the spectrum of II (Table 1), H-1" appeared at 4.74 as a doublet $(J_{1",2"}=6.5)$. This large coupling constant favored β -glycoside linkage.¹⁰⁾ Accordingly, the structure of ezomycin A₂ was elucidated as II.

Hydrogenation of I with Raney Ni liberated L-alanine, suggesting that L-cystathionine is attached to II at the homocysteine part.¹⁾ Reduction of VII: $[\alpha]_D^{27}$ -43.2° (<u>c</u>=0.50, H₂0); $\delta(D_2^0)$

Fig. 1. CD Spectra of I, II, VIII and cytidine.

2.2-3.0 (4H), 3.46 (2H, m.), 3.82 (2H), 4.6-5.1 (3H), 5.60 (0.5H, t., 6.0), 5.80 (0.5H, d., 6.0) with NaBH_A afforded <u>N</u>-(2',4'-dihydroxybutyryl)- \underline{L} -cystathionine sulfoxide (X): $\delta(D_{2}0)$ 2.3 (2H, m.), 2.65 (2H, m.), 3.45 (2H, t., 7.5), 3.82 (2H, d., 6.0), 4.15 (2H, t., 6.5), 4.72 (2H, m.). A pair of anomeric proton signals (5.60 and 5.80) in VII disappeared and a triplet (4.15) ascribable to a hydroxymethyl having two vicinal hydrogens was observed. This allows the assignment of a lactam-aminohemiacetal structure to VII as depicted in Scheme 1.

X was readily hydrolyzed with 0.5N HCl at 90° for 30 min. to afford L-cystathionine sulfoxide (XI): $C_7 H_{14} N_2 O_5 S^{\#}$; amorphous, mp >210° (dec.); $[\alpha]_D^{27}$ +10.2° (<u>c</u>=0.52, 0.1N NaOH) and α hydroxybutyrolactone (XII): $M^+ m/e$ 102 for $C_4H_6O_3$; CD (MeOH) $[\theta]_{222}^{25}$ +5800. The positive Cotton effect at 222 nm shows S-configuration of XII¹¹⁾ and, consequently, confirms <u>D</u>-configuration of III.⁴⁾ Thus, the structure of ezomycin A_1 was proposed as I.

The authors are indebted to Dr. K. Takaoka of Hokkai Sankyo Co., Ltd. for Acknowledgment. supplying the crude ezomycin complex.

References

- 1) K. Sakata, A. Sakurai and S. Tamura, Agr. Biol. Chem., <u>37</u>, 697 (1973).
- 2) idem., ibid., in press.

- a) R. M. Fink, R.E. Cline, C. McGaughey and K. Fink, <u>Anal. Chem.</u>, <u>28</u>, 4 (1956).
 4) K. Sakata, A. Sakurai and S. Tamura, <u>Tet. Lett.</u>, 1533 (1974).
 5) A. I. Scott, "Interpretation of the Ultra Violet Spectra of Natural Products," Pergamon Press, 1964, p. 243.
- 6) a) N. J. Cusack, B. J. Hildick, D. H. Roinson, P. W. Rugg and G. Shaw, J. Chem. Soc., Perkin I, 1720 (1973); b) L. Goldman and J. W. Marisco, J. Med. Chem., 6, 413 (1963); c) C. D. Jardetzky, <u>J. Am. Chem. Soc.</u>, <u>84</u>, 62 (1962). 7) F. E. Hruska, A. A. Grey and I.C.P. Smith, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 4088 (1970). 8) D. W. Miles, M. J. Robins, R. K. Robins, M. W. Winkley and H. Eyring, <u>J. Am. Chem. Soc.</u>, <u>91</u>,
- 831 (1969).
- 9) This is the first octose derivative containing bicyclic system. Dr. K. Isono of this Institute recently isolated from culture filtrate of Streptomyces cacaoi novel nucleosides named "octosyl acids A, B and C" which have the same cyclic system as that of VIII (private communication).
- 10) J. F. Stoddart, "Stereochemistry of Carbohydrates," Wiley-Interscience, 1971, p. 137.
- 11) H. Meguro, K. Hachiya, A. Tagiri and K. Tuzimura, Agr. Biol. Chem., 36, 2075 (1972).